

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Optical Properties of Polymethyl Methacrylate Doped with Neodymium Chelates

Biao Chen^{ab}; Hao Liang^{bc}; Jie Xu^b; Qijin Zhang^{ab}

^a Structure Research Laboratory, University of Science and Technology of China, Hefei, Anhui, People's Republic of China ^b Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, People's Republic of China ^c Petrochemical Institute, East China University of Science and Technology, Shanghai, People's Republic of China

To cite this Article Chen, Biao , Liang, Hao , Xu, Jie and Zhang, Qijin(2006) 'Optical Properties of Polymethyl Methacrylate Doped with Neodymium Chelates', Spectroscopy Letters, 39: 1, 63 – 71

To link to this Article: DOI: 10.1080/00387010500434313

URL: <http://dx.doi.org/10.1080/00387010500434313>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Optical Properties of Polymethyl Methacrylate Doped with Neodymium Chelates

Biao Chen

Structure Research Laboratory, University
of Science and Technology of China, Hefei, Anhui,
People's Republic of China and Department of Polymer Science and
Engineering, University of Science and Technology of China, Hefei,
Anhui, People's Republic of China

Hao Liang

Department of Polymer Science and Engineering, University of Science
and Technology of China, Hefei, Anhui, People's Republic of China and
Petrochemical Institute, East China University of Science and
Technology, Shanghai, People's Republic of China

Jie Xu

Department of Polymer Science and Engineering, University of Science
and Technology of China, Hefei, Anhui, People's Republic of China

Qijin Zhang

Structure Research Laboratory, University
of Science and Technology of China, Hefei, Anhui,
People's Republic of China and Department of Polymer Science and
Engineering, University of Science and Technology of China, Hefei,
Anhui, People's Republic of China

Abstract: The luminescence of $\text{Nd}(\text{DBM})_3(\text{H}_2\text{O})_{2-}$, $\text{Nd}(\text{DBM})_3\text{Phen}-$, and $\text{Nd}(\text{DBM})_3$
(TOPO)₂-doped polymethyl methacrylate (PMMA) was investigated under excitation at

Received 7 January 2005, Accepted 16 May 2005

Address correspondence to Hao Liang, Department of Polymer Science and
Engineering, University of Science and Technology of China, Hefei, Anhui 230026,
People's Republic of China. E-mail: lianghao@ustc.edu

17,100 cm⁻¹ ($^4\text{I}_{9/2} \rightarrow ^4\text{G}_{7/2}$). The $^4\text{F}_{3/2} \rightarrow ^4\text{I}_{11/2}$ transition of the Nd(DBM)₃(TPPO)₂-doped PMMA showed the strongest intensity. In order to predict the radiative properties of Nd(DBM)₃(TOPO)₂-doped PMMA, its absorption spectrum was measured and Judd-Ofelt parameters ($\Omega_2, \Omega_4, \Omega_6$) were calculated. The values of the radiative lifetime and the emission cross-section of $^4\text{F}_{3/2} \rightarrow ^4\text{I}_{11/2}$ transition are comparable with those shown by glasses used in solid state laser applications. It can be concluded that Nd(DBM)₃(TOPO)₂-doped PMMA is an efficient luminescent material.

Keywords: Chelate, Judd-Ofelt theory, luminescent material, polymer

INTRODUCTION

In recent years, rare-earth-doped polymer systems are of interest for their potential applications for laser systems, polymer optical fiber amplifier, and integrated waveguides.^[1–6] In these doped systems, rare-earth β -diketonates are often adopted because they show good compatibility with the polymer matrix.^[5–10]

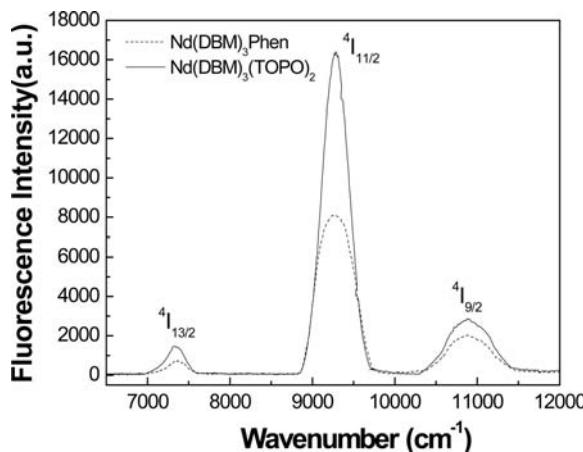
Trivalent neodymium has been well studied for its laser characteristics of $^4\text{F}_{3/2} \rightarrow ^4\text{I}_{11/2}$ transition.^[7] In this paper, Nd β -diketonate chelate-doped polymer luminescent material was fabricated by incorporating Nd(DBM)₃(H₂O)₂, Nd(DBM)₃Phen, and Nd(DBM)₃(TOPO)₂ into polymethyl methacrylate (PMMA). PMMA was selected as the matrix for its low optical absorption, simple synthesis, and low cost. The fluorescence spectra measurement showed that the $^4\text{F}_{3/2} \rightarrow ^4\text{I}_{11/2}$ transition intensity of Nd(DBM)₃(TPPO)₂-doped PMMA is the strongest. According to the absorption spectrum, the Judd-Ofelt parameters of Nd(DBM)₃(TOPO)₂-doped PMMA were calculated, and its radiative properties were predicted. The result showed that it is a promising luminescent material for $^4\text{F}_{3/2} \rightarrow ^4\text{I}_{11/2}$ transition.

MATERIALS AND METHODS

Nd(DBM)₃(H₂O)₂ and Nd(DBM)₃Phen were synthesized according to the literature.^[11] To synthesize Nd(DBM)₃(TOPO)₂, the chloroform containing Nd(DBM)₃(H₂O)₂ and trioctylphosphine oxide (TOPO) was refluxed under stirring for 7 hr. The molar ratio of Nd(DBM)₃(H₂O)₂ and TOPO is 1:2. After volatilization of the chloroform, the products were recrystallized from acetone/petroleum ether and dried under vacuum.

Nd chelates-doped PMMA was prepared by bulk polymerization. First, the methyl methacrylate (MMA) solution (0.03 mol · dm⁻³) of Nd chelates is obtained by dissolving Nd chelates in purified MMA. Then, 30 mg 2,2-azoisobutyronitrile (AIBN) as initiator was added to 20 mL of the above solution. The prepolymerization was carried out at 85°C for 30 min. After that, the pre-polymerized solution was poured into a mold. The polymerization of the model was carried out at 50°C for 24 hr and additionally heated

at 90°C until solidification was fulfilled. The samples were cut and polished for optical measurements.


The fluorescence spectra were measured by an Edinburgh Instruments FLS920 spectrophotometer. The absorption spectrum was recorded with a UV-VIS-NIR spectrophotometer (Perkin Elmer Lambda 900) at room temperature. The refractive index of Nd-doped PMMA is $n = 1.495$ and was measured using an Abbe refractometer (Shanghai Optical Instrument Factory).

RESULTS AND DISCUSSION

Fluorescence Properties

Figure 1 shows the fluorescence spectra of Nd(DBM)₃Phen- and Nd(DBM)₃(TOPO)₂-doped PMMA from 6500 to 12,000 cm⁻¹ under the excitation at 17,100 cm⁻¹ ($^4I_{9/2} \rightarrow ^4G_{7/2}$). The fluorescence spectra consisted of three bands, which were assigned to the transition of $^4F_{3/2} \rightarrow ^4I_{9/2}$, $^4F_{3/2} \rightarrow ^4I_{11/2}$, and $^4F_{3/2} \rightarrow ^4I_{13/2}$, respectively. The emission of the $^4F_{3/2} \rightarrow ^4I_{11/2}$ is the strongest.

Under the same condition, luminescence of Nd(DBM)₃(H₂O)₂-doped PMMA was not observed. The quenching via vibrational excitation of H₂O should be responsible for this phenomenon of Nd(DBM)₃(H₂O)₂-doped PMMA, because the probability of energy transfer to the H₂O (3450 cm⁻¹) vibration is much higher. Accordingly, it should be possible to observe fluorescence by replacing H₂O in the vicinity of Nd(DBM)₃ with ligands having

Figure 1. Fluorescence spectra of Nd(DBM)₃Phen- and Nd(DBM)₃(TOPO)₂-doped PMMA under the excitation at 17,100 cm⁻¹ ($^4I_{9/2} \rightarrow ^4G_{7/2}$).

lower vibrational modes. Both $\text{Nd}(\text{DBM})_3\text{Phen}$ and $\text{Nd}(\text{DBM})_3(\text{TOPO})_2$ showed fluorescence in PMMA. In Fig. 1, $^4\text{F}_{3/2} \rightarrow ^4\text{I}_{11/2}$ transition intensity of $\text{Nd}(\text{DBM})_3(\text{TOPO})_2$ -doped PMMA is larger than that of $\text{Nd}(\text{DBM})_3\text{Phen}$. The enhanced fluorescence of $\text{Nd}(\text{DBM})_3(\text{TOPO})_2$ is ascribed to its lower vibrational structure of TOPO ($\text{P} = \text{O}$: 1125 cm^{-1}) than that of the Phen ($\text{C} = \text{N}$: 1630 cm^{-1}).

The fluorescence spectra measurement result showed that the $^4\text{F}_{3/2} \rightarrow ^4\text{I}_{11/2}$ transition intensity of $\text{Nd}(\text{DBM})_3(\text{TPPO})_2$ -doped PMMA is the strongest. In order to evaluate the radiative properties of $\text{Nd}(\text{DBM})_3(\text{TOPO})_2$ -doped PMMA, the Judd-Ofelt analysis^[12,13] was carried out according to its absorption spectrum.

Judd-Ofelt Analysis

Figure 2 shows the absorption spectrum of $\text{Nd}(\text{DBM})_3(\text{TOPO})_2$ -doped PMMA at room temperature in the range $10,500$ – $21,000 \text{ cm}^{-1}$. Absorption bands are observed at $\nu = 11,000$ – $11,800$, $12,000$ – $13,000$, $13,000$ – $14,000$, $14,300$ – $16,400$, $16,400$ – $17,900$, $17,900$ – $19,200$, and $19,200$ – $20,400 \text{ cm}^{-1}$. They are attributed to the Nd^{3+} transitions from the ground state, $^4\text{I}_{9/2}$, to various excited states. One of the important characteristics of the spectrum is the stark splitting of the absorption peak around $\nu = 11,300$ – $11,600 \text{ cm}^{-1}$, which is attributed to the $^4\text{I}_{9/2} \rightarrow ^4\text{F}_{3/2}$. Slight splitting of the $^4\text{F}_{3/2}$ degenerate levels should be induced by changed in the ligand field around Nd^{3+} and it proved that there is an asymmetric coordination environment of $\text{Nd}(\text{DBM})_3(\text{TOPO})_2$ -doped PMMA.

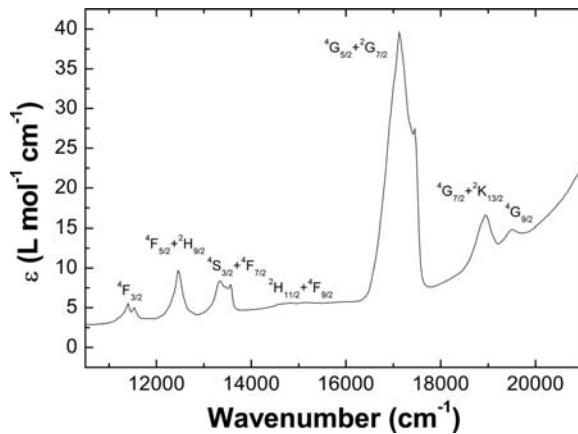


Figure 2. Absorption spectrum of $\text{Nd}(\text{DBM})_3(\text{TOPO})_2$ -doped PMMA.

The oscillator strength of an absorption band is determined experimentally from the area under the absorption band and can be expressed using the following equation:^[14]

$$P_{\text{exp}} = 4.318 \times 10^{-9} \int \varepsilon(\nu) d\nu \quad (1)$$

where $\varepsilon(\nu)$ is the molar extinction coefficient ($\text{dm}^3 \text{ mol}^{-1} \text{ cm}^{-1}$) at the energy ν (cm^{-1}), which has been evaluated from Beer's law.

According to Judd-Ofelt theory, the oscillator strengths are given by^[14]:

$$P = \left[\frac{8\pi^2 m c v}{3 h} \right] \times \left[\frac{(n^2 + 2)^2}{9n} \right] \sum_{\lambda=2,4,6} \frac{\Omega_{\lambda}}{(2J+1)} \times \langle f^N \Psi_J | U^{(\lambda)} | f^N \Psi'_{J'} \rangle^2 \quad (2)$$

where m is the mass of electron, c is the velocity of light, h is the Plank constant, n is the refractive index, ν is the frequency in inverse centimeters, J is the total angular momentum of the initial state, $U^{(\lambda)}$ are tensor operators of rank λ given by Carnall et al.^[14] The $f^N \Psi_J$ are wave functions of the states with N electrons in the $4f$ shell having total angular momentum J , and Ω_{λ} are Judd-Ofelt parameters.

Using the oscillator strengths, the corresponding theoretical oscillator strengths and the Judd-Ofelt parameters Ω_{λ} can be calculated numerically by a least-squares method.

The usual measure of the fitting quality is the root mean square deviation (rms) between the experimental and calculated oscillator strengths, and the rms deviation is calculated in the usual way:

$$rms = \left[\frac{\sum_{i=1}^N (P_{\text{exp}}^i - P_{\text{calc}}^i)^2}{N - 3} \right]^{\frac{1}{2}} \quad (3)$$

where N is the number of levels fitted.

The values of oscillator strengths and Judd-Ofelt parameters of Nd(DBM)₃(TOPO)₂-doped PMMA are listed in Table 1.

It is well-known that the oscillator strength of the hypersensitive transition $^4\text{I}_{9/2} \rightarrow ^4\text{G}_{5/2} + ^2\text{G}_{7/2}$ at $\nu = 16,400 - 17,900 \text{ cm}^{-1}$ is enhanced as the symmetry of the ligand field is reduced. From Table 1, the oscillator strength of Nd(DBM)₃(TOPO)₂-doped PMMA at the hypersensitive transition is very large. The reason may be due to the fact that Nd(DBM)₃(TPPO)₂ have no center of symmetry in PMMA, which has been discussed above. The rms deviation is $\pm 0.82 \times 10^{-6}$ for Nd(DBM)₃(TOPO)₂-doped PMMA matrix, which is comparable with previous studies of other neodymium systems.^[5,15]

Table 1. The oscillator strengths and Judd-Ofelt parameters of Nd(DBM)₃(TOPO)₂-doped PMMA

Wavenumber range (cm ⁻¹)	Excited states	Oscillator strength $P \times 10^6$	
		P_{exp}	P_{calc}
19,200–20,400	⁴ G _{9/2}	1.97	1.44
17,900–19,200	⁴ G _{7/2} , ² K _{13/2}	6.99	7.91
16,400–17,900	⁴ G _{5/2} , ² G _{7/2}	83.77	83.71
14,300–16,400	² H _{11/2} , ⁴ F _{9/2}	1.44	0.68
13,000–14,000	⁴ S _{3/2} , ⁴ F _{7/2}	6.87	6.43
12,000–13,000	⁴ F _{5/2} , ² H _{9/2}	5.72	6.31
11,000–11,800	⁴ F _{3/2}	2.21	1.53
<i>rms</i> deviation (10 ⁻⁶)		\pm 0.82	
Ω_2 (10 ⁻²⁰ cm ²)		32.64	
Ω_4 (10 ⁻²⁰ cm ²)		2.89	
Ω_6 (10 ⁻²⁰ cm ²)		4.81	

Radiative Properties of Nd(DBM)₃(TOPO)₂-doped PMMA

From the Judd-Ofelt parameters Ω_λ obtained above, the probability of ⁴F_{3/2} → ⁴I_j transition can be calculated using the following equation^[16]:

$$A[{}^4F_{3/2}, (S, L)J] = \frac{64\pi^4 e^2 v^3}{3h(2J' + 1)} \frac{n(n^2 + 2)^2}{9} \times \sum_{\lambda=2,4,6} \Omega_\lambda |\langle {}^4F_{3/2} | U^{(\lambda)} | (S, L)J \rangle|^2 \quad (4)$$

where (S,L)J are quantum numbers of the lower state, $J' = 3/2$. Then the radiative lifetime is given by:

$$\tau_{rad} = \frac{1}{\sum_{S,L,J} A[{}^4F_{3/2}, (S, L)J]} \quad (5)$$

And the fluorescence branch ratio β is given by:

$$\beta[(S, L)J] = A[{}^4F_{3/2}, (S, L)J] \tau_{rad} \quad (6)$$

Finally the emission cross-section, σ_p , can be related to the radiative transition probability using the formula:^[16]

$$\sigma_p = \frac{A_{JJ'}}{8\pi n^2 c v_p^2 \Delta \nu_{eff}} \quad \text{where } \Delta \nu_{eff} = \frac{\int I(\nu) d\nu}{I_{peak}} \quad (7)$$

Table 2. The transition probabilities A , fluorescence branching ratios β , emission cross-sections of $^4F_{3/2} \rightarrow ^4I_j$ and radiative lifetime τ_{rad}

Terminal state	A (s^{-1})	β	σ (10^{-20} cm^2)
$^4I_{9/2}$	649	0.344	0.77
$^4I_{11/2}$	1022	0.542	2.63
$^4I_{13/2}$	216	0.114	1.25
ΣA	1887		
τ_{rad} (μs)	530		

where ν_p is the peak wavenumber of the transition, $I(\nu)$ is the fluorescence intensity at ν , and I^{peak} is the peak fluorescence intensity of the band.

The values of transition probabilities A , the fluorescence branching ratios β , the radiative lifetime τ_{rad} and emission cross-sections σ_p are presented in Table 2.

The radiative lifetime of the transition involved is an important parameter in consideration of the pumping requirement for the threshold of laser action. In Table 2, the calculated radiative lifetimes is $530 \mu\text{s}$ for Nd(DBM)₃(TOPO)₂-doped PMMA. It is comparable with those radiative lifetimes of neodymium laser glasses (theoretical radiative excited state lifetime values).^[16–19] However, the value of radiative lifetime obtained by Judd-Ofelt theory is not the actual value. It has only been used to estimate the radiative properties of Nd(DBM)₃(TOPO)₂-doped PMMA. The actual metastable lifetime can be measured by related instruments. The emission cross section σ_p of $^4F_{3/2} \rightarrow ^4I_{11/2}$ fluorescence transition of Nd³⁺ is one of the most important parameters for laser design and it is dependent only on Ω_4 and Ω_6 , because of the triangle rule $|J - J'| \leq \lambda \leq (J + J')$, $|U^{(t)}|^2 = 0$.^[20] For a large emission cross section, the magnitude of Ω_4 , Ω_6 and the fluorescence branching ratio β of $^4F_{3/2} \rightarrow ^4I_{11/2}$ should be as high as possible. The emission cross-section σ_p of $^4F_{3/2} \rightarrow ^4I_{11/2}$ fluorescence transition of Nd(DBM)₃(TOPO)₂-doped PMMA is $2.63 \times 10^{-20} \text{ cm}^2$, which is also comparable with those shown by glasses used in the solid-state laser applications.^[16–19]

From the magnitude of the radiative lifetime and the emission cross-section of $^4F_{3/2} \rightarrow ^4I_{11/2}$ fluorescence transition, it can be concluded that Nd(DBM)₃(TOPO)₂-doped PMMA is a promising luminescent material.

CONCLUSION

In conclusion, according to the fluorescence spectra measurement, Nd(DBM)₃(TPPO)₂-doped PMMA showed the strongest $^4F_{3/2} \rightarrow ^4I_{11/2}$ transition intensity. Thus, its Judd-Ofelt parameters (Ω_2 , Ω_4 , Ω_6) were

calculated on the basis of the absorption spectrum, and the radiative properties were also predicted according to the Judd-Ofelt theory. The values of the radiative lifetime and the emission cross-section of $^4F_{3/2} \rightarrow ^4I_{11/2}$ fluorescence transition are comparable with those shown by glasses used in the solid-state laser applications. It can be concluded that Nd(DBM)₃(TOPO)₂-doped PMMA is an efficient luminescent material.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (no. 50025309 and no. 90201016) and State Key Project of Fundamental Research (no. RE-05-02). The authors gratefully acknowledge the financial support and wish to express their thanks to the referees for critically reviewing the manuscript and making important suggestions.

REFERENCES

1. Liang, H.; Chen, B.; Zheng, Z.; Zhang, Q.; Ming, H. Optical studies of Er(DBM)₃Phen containing methyl methacrylate solution and poly(methyl methacrylate) matrix. *Mater. Chem. Phys.* **2004**, *86* (2), 430–434.
2. Kuriki, K.; Nishihara, S.; Nishizavva, Y.; Tagaya, A.; Okamoto, Y.; Koike, Y. Fabrication and optical properties of neodymium-, praseodymium- and erbium-chelates-doped plastic optical fibers. *Electron. Lett.* **2001**, *37* (7), 415–417.
3. Kobayashi, T.; Nakatsuka, S.; Iwafuji, T.; Kuiki, K.; Imai, N.; Yamamoto, T. Fabrication and superfluorescence of rare-earth chelate-doped graded index polymer optical fibers. *Appl. Phys. Lett.* **1997**, *71* (17), 2421–2423.
4. Chen, B.; Xu, J.; Dong, N.; Liang, H.; Zhang, Q.; Yin, M. Spectra analysis of Nd(DBM)₃(TPPO)₂ in MMA solution and PMMA matrix. *Spectroc. Acta A Molec. Biomolec. Spectr.* **2004**, *60* (13), 3113–3118.
5. Koeppen, C.; Yamada, S.; Jiang, G.; Garito, A. F. Rare-earth organic complexes for amplification in polymer optical fibers and waveguides. *J. Opt. Soc. Am. B* **1997**, *14* (1), 155–162.
6. Liang, H.; Zhang, Q.; Zheng, Z.; Ming, H.; Li, Z.; Xu, J.; Chen, B.; Zhao, H. Optical amplification of Eu(DBM)₃Phen-doped polymer optical fiber. *Optics Lett.* **2004**, *29* (5), 477–479.
7. Kuriki, K.; Koike, Y. Plastic optical fiber lasers and amplifiers containing lanthanide complexes. *Chem. Rev.* **2002**, *102* (6), 2347–2356.
8. Bender, J. L.; Corbin, P. S.; Fraser, C. L.; Metcalf, D. H.; Richardson, F. S.; Thomas, E. L.; Urbas, A. M. Site-isolated luminescent europium complexes with polyester macroligands: Metal-centered heteroarm stars and nanoscale assemblies with labile block junctions. *J. Am. Chem. Soc.* **2002**, *124* (29), 8526–8527.
9. Iwamuro, M.; Hasegawa, Y.; Wada, Y.; Murakoshi, K.; Nakashima, N.; Yamanaka, T.; Yanagida, S. Luminescence of Nd³⁺ complexes with some asymmetric ligands in organic solutions. *J. Lumin.* **1998**, *79* (1), 29–38.

10. Yanagida, S.; Hasegawa, Y.; Wada, Y. Remarkable luminescence of novel Nd(III) complexes with low-vibrational hexafluoroacetylacetone and DMSO-d₆ molecules. *J. Lumin.* **2000**, *87–89* (1), 995–998.
11. Melby, L.; Rose, N.; Abramson, E.; Caris, J. C. Synthesis and fluorescence of some trivalent lanthanide complexes. *J. Am. Chem. Soc.* **1964**, *86* (23), 5117–5125.
12. Judd, B. R. Optical absorption intensities of rare-earth ions. *Phys. Rev.* **1962**, *127* (3), 750–761.
13. Ofelt, G. S. Intensities of the crystal spectra of rare earth ions. *J. Chem. Phys.* **1962**, *37* (1), 511–520.
14. Carnall, W. T.; Fields, P. R.; Rajnak, K. Electronic energy levels in the trivalent aquo ions: Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Dy³⁺, Ho³⁺, Er³⁺, and Tm³⁺. *J. Chem. Phys.* **1968**, *49* (9), 4424–4442.
15. Kumar, G. A.; Martinez, A.; De La Rosa, Elder. Stimulated emission and radiative properties of Nd³⁺ ions in barium fluorophosphate glass containing sulphate. *J. Lumin.* **2002**, *99* (2), 141–148.
16. Krupke, W. Induced-emission cross section in neodymium laser glasses. *IEEE J. Quantum Electron.* **1974**, *10* (4), 450–457.
17. Mehta, V.; Aka, G.; Dawar, A. L.; Mansingh, A. Optical properties and spectroscopic parameters of Nd³⁺-doped phosphate and borate glasses. *Opt. Mater.* **1999**, *12* (1), 53–63.
18. Speghini, A.; Peruffo, M.; Casarin, M.; Ajo, D.; Bettinelli, M. Electronic spectroscopy of trivalent lanthanide ions in lead zinc borate glasses. *J. Alloy. Compd.* **2000**, *300–301* (1), 174–179.
19. Rolli, R.; Gatterer, K.; Wachtler, M.; Bettinelli, M.; Speghini, A.; Ajo, D. Optical spectroscopy of lanthanide ions in ZnO-TeO₂ glasses. *Spectroc. Acta A Molec. Biomolec. Spectr.* **2001**, *57* (10), 2009–2017.
20. Jacobs, R. R.; Weber, M. J. Dependence of the ⁴F_{3/2} → ⁴I_{11/2} induced-emission cross section for Nd³⁺ on glass composition. *IEEE J. Quantum Electron.* **1976**, *12* (2), 102–111.